Halogen–magnesium exchange on unprotected aromatic and heteroaromatic carboxylic acids[†]

Felix Kopp, Stefan Wunderlich and Paul Knochel*

Received (in Cambridge, UK) 2nd January 2007, Accepted 17th January 2007 First published as an Advance Article on the web 22nd February 2007 DOI: 10.1039/b618923g

The magnesiation of halogenated aromatic and heteroaromatic carboxylic acids is accomplished by their treatment with MeMgCl in the presence of LiCl and subsequent reaction with *i*-PrMgCl·LiCl; the resulting double-magnesiated species react with a variety of electrophiles in up to 97% yield.

The preparation of functionalized Grignard reagents is an important goal, since these organometallics represent unique tools for the construction of complex molecules.¹ The halogen– magnesium exchange is a broadly applicable and convenient method for the generation of polyfunctional Grignard reagents, recently being extended by the use of LiCl as an additive.² Besides increasing the reactivity of Grignard reagents, 3 we have found that LiCl dramatically improves the solubility of organometallics.⁴ A double-magnesiation strategy⁵ allows the generation of Grignard reagents derived from iodophenols without the need of a protecting group. A similar approach would be very useful for the functionalization of carboxylic acid derivatives.⁶ The use of mixed Li/Mg-reagents, as investigated by Mase is not applicable to a broad range of functionalized substrates. Indeed, the high reactivity of lithium reagents precludes the presence of many functional groups.⁷

Thus, 4-iodobenzoic acid was reacted with MeMgCl (1.0 equiv.) in the presence of LiCl (1.0 equiv.) at -20 °C, and subsequently i -PrMgCl·LiCl (1.1 equiv.) was added to perform the iodine– magnesium exchange. The reaction mixture was allowed to warm up to room temperature. After 0.5 h, a full conversion to the desired magnesium reagent was observed. The reactions with typical electrophiles like benzaldehyde or benzoyl chloride afforded the desired products 3a and 3b in 95 and 71% isolated yield (Table 1, entries 1, 2). By applying a mild acidic workup using citric acid, even a sensitive boronic ester can be installed by a sequential reaction with $B(Oi-Pr)$ ₃ and 2,2-dimethylpropane-1,3diol, yielding the desired boronic ester (3c) in 50% yield (entry 3).

Also meta- and ortho- positions can be easily functionalized using this protocol. Using ethyl 2-(bromomethyl)acrylate, 8 the expected allylated product 3d is produced in 78% yield (entry 4). The lactone 3e is obtained by the reaction with cyclohexane carbaldehyde in 87% yield (entry 5). Several functionalized substrates can be used. Halides like a bromide (1d) or an additional iodide (1e) are tolerated and the corresponding

Grignard reagents show a good reactivity towards electrophiles like cyclohexane carbaldehyde, 4-bromobenzaldehyde or allyl bromide. The desired products 3f–h have been isolated in 69– 91% yield (entries 6, 7, 8). The reaction of the organomagnesium reagent 2e with TsCN gives rise to the benzonitrile 3i in 55% (entry 9). Also, an ethyl ester (1f) or a sensitive pivalate like 1g are appropriate substrates. The desired products from the reactions with pivaldehyde and anthraldehyde, 3*j* and 3*k*, are isolated in 70 and 67%, respectively (entries 10 and 11). Finally, a sterically hindered substrate like 1h reacts smoothly under the usual reaction conditions; subsequent treatment with p-bromobenzoyl chloride affords the ketoacid 3l in 81% yield (entry 12).

Highly activated heteroaromatic acids like 5-bromo-2-furoic acid (4), 5-bromothiophene-2-carboxylic acid (5), or 4,5-dibromothiophene-2-carboxylic acid (6) react rapidly $(-20 \degree C$ to rt) (Scheme 2). Thus, 5-bromo-2-furoic acid (4) is magnesiated in only 30 min and its reactions with allyl bromide and 4-(trifluoromethyl)benzaldehyde lead to the expected products 7a and 7b in 92 and 88% yield. Analogously, the corresponding thiophene carboxylic acid 5 was metallated and reacted with MeSSO₂Me to give the thioether 8a in 93% yield. Transmetallation of the same Grignard reagent with ZnCl₂ followed by a Pd-catalyzed crosscoupling⁹ with 4-iodo-N,N-dimethylaniline employing Pd(dba)₂ (5.0 mol) and tri-2-furylphosphine (10 mol) as a catalyst system, affords the functionalized 2-arylated thiophene 8b in 95% yield. 4,5-Dibromothiophene-2-carboxylic acid (6) can be selectively magnesiated in the 5-position $(-20 \degree C, 1 \text{ h})$.¹⁰ The resulting Grignard reagent was reacted with allyl bromide providing the desired product 9a in 97% yield. The reaction with ethyl chloroformate gives, after recrystallization, the 5-carbethoxythiophene derivative 9b (56%).

Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Haus F, 81377 München, Germany. E-mail: Paul.Knochel@cup.uni-muenchen.de; Fax: (+49)-89-2180-77680; Tel: (+49)-89-2180-77681 { Electronic supplementary information (ESI) available: experimental procedures for the starting materials and products as well as the characterization of all compounds. See DOI: 10.1039/b618923g Scheme 1

Entry	Substrate of type 1/exchange conditions		Electrophile	Product of type 3		Yield $(\%)^a$
$\mathbf 1$	O `OH	1a	PhCHO	O OH Ph	3a	95
$\mathbf 2$	-20 °C to rt, 45 min 1a -20 °C to rt, 45 min		PhCOCl	OН O ЮH Ph	3 _b	71^b
3	1a -20 °C to rt, 45 min		1. $B(O_i-P_r)_3$ 2. ЮH HC	Ο O `OH 0.8 Ö	$3c$	$50\,$
4	O `OH	$1\mathrm{b}$	CO ₂ Et Br<	CO ₂ Et _O `OH	$3d$	$78^c\,$
5	$-20~^\circ\mathrm{C}$ to rt, 45 min ЮH	$1\mathrm{c}$	CyCHO		3e	87
6	-20 °C to rt, 45 min Ő `OH Br	$1d\,$	CyCHO	OH O Юŕ Cy Br	$3f$	91
7	-20 °C, 60 min 1 _d -20 °C, 60 min		4-Br-C ₆ H ₄ CHO	OH O `OH R ² Br	$3g$	69
8	O `OH	$1\mathrm{e}$	$\rm AllBr$	$R = p$ -BrC ₆ H ₄ `OH	3h	70 ^d
$\boldsymbol{9}$	-50 °C, 60 min 1e -50 °C, 60 min		TsCN	Ο `OH	3i	55
${\bf 10}$	ΟH CO ₂ Et	$1\ensuremath{\mbox{f}}$	t -BuCHO	ĊN OH O ЮH t -Buʻ CO ₂ Et	$3j$	$70\,$
11	-20 °C, 60 min O Юŕ OPiv -20 °C, 40 min	1g	anthraldehyde	OH O R ¹ `OH OPiv $R = 9$ -anthranyl	$3\mathrm{k}$	67
$12\,$	O `OH Me [®] -20 °C to rt, 45 min	$1h$	4-Br-C ₆ H ₄ COCl	O R^2 `OH Me $R^2 = p$ -BrC ₆ H ₄	3 _l	81^b

Table 1 Preparation of magnesiated aromatic carboxylates of type 2 and their reactions with various electrophiles

^a Yield of analytically pure products. $\frac{b}{b}$ The reaction was carried out in the presence of 20 mol% CuCN.2LiCl. $\frac{c}{c}$ A transmetallation using 1.1 equiv. CuCN.2LiCl was performed. ^d The reaction was carried out in the presence of CuCN 2LiCl (1 mol%).

Scheme 2^a The reaction was carried out in the presence of CuCN.2LiCl (1 mol\%) . b Obtained by palladium-catalyzed cross-coupling after transmetallation with ZnCl₂.

Scheme 3

Finally, we have also applied this protocol to a substrate bearing two acidic protons. Thus, we have treated 5-cyano-2-hydroxy-3 iodobenzoic acid (10) first at -20 °C with two equivalents of MeMgCl (in the presence of an equimolar amount of LiCl), then with *i*-PrMgCl[·]LiCl (1.05 equiv., -20 °C, 2 h) to get the triplemagnesiated benzonitrile 11, which reacted with PhSSO₂Ph furnishing the highly functionalized product 12 in 55% yield (Scheme 3).

In conclusion, we have reported a convenient and easy protocol for the functionalization of unprotected aromatic and heteroaromatic carboxylic acids that tolerates a broad variety of functional groups. The resulting organometallics react smoothly with a broad range of electrophiles, giving the desired products in good yields.

We thank the Fonds der Chemischen Industrie and the G.I.F. (German-Israeli Foundation for Scientific Research and Development) for a fellowship to F.K. (I-693-7.5/01). We are grateful to Chemetall GmbH (Frankfurt) and BASF AG (Ludwigshafen) for generous gifts of chemicals.

Notes and references

- 1 G. S. Silverman and P. E. Rakika, in Handbook of Grignard Reagents, Marcel Dekker, New York, 1996; Grignard Reagents: New Developments, ed. H. G. Richey, Jr., Wiley, New York, 1999.
- 2 P. Knochel, W. Dohle, N. Gommermann, F. F. Kneisel, F. Kopp, T. Korn, I. Sapountzis and V. A. Vu, Angew. Chem., Int. Ed., 2003, 42, 4302; A. Krasovskiy and P. Knochel, Angew. Chem., Int. Ed., 2004, 43, 3333.
- 3 A. Krasovskiy, B. Straub and P. Knochel, Angew. Chem., Int. Ed., 2006, 45, 15.
- 4 For the solubilization of lanthanide salts in the presence of LiCl, see: A. Krasovskiy, F. Kopp and P. Knochel, Angew. Chem., Int. Ed., 2006, 45, 497.
- 5 F. Kopp, A. Krasovskiy and P. Knochel, Chem. Commun., 2004, 20, 2288
- 6 Following the same aim, the ortho-metalation of unprotected benzoic acids has recently been described: t.-H. Nguyen, A.-S. Castanet and J. Mortier, Org. Lett., 2006, 8, 765.
- 7 S. Kato, N. Nonoyama, K. Tomimoto and T. Mase, Tetrahedron Lett., 2002, 43, 7315.
- 8 J. Villieras and M. Rambaud, Synthesis, 1982, 924.
- 9 E. Negishi, A. O. King and N. Okukadu, J. Org. Chem., 1977, 42, 1821; E. Negishi, T. Takahashi and A. O. King, Org. Synth., 1988, 66, 67.
- 10 Quenching the Grignard reagent with MeOH affords quantitatively 4-bromo-2-furoic acid, which is known in the literature; see also supporting information†.